Цепи постоянного тока

Сложные цепи. Метод контурных токов

Метод контурных токов дает возможность упростить расчет электрических цепей по сравнению с методом законов Кирхгофа за счет уменьшения числа уравнений, которые приходится решать совместно до величины: (l-k+1-m) и основан на применении второго закона Кирхгофа. Напомним, что: k - количество узлов электрической цепи, l - ветвей и m - идеальных источников тока. Метод основывается на том свойстве, что ток в любой ветви может быть представлен как алгебраическая сумма контурных токов, протекающих по этой ветви. Уравнения составляются только по второму закону Кирхгофа, но не для действительных, а для воображаемых токов, циркулирующих по замкнутым контурам электрической цепи.

Расчет сложных электрических цепей методом контурных токов производят в следующей последовательности:

  1. Вычерчиваем принципиальную схему и все ее элементы.
  2. На схеме выбирают и обозначают контурные токи, таким образом, чтобы по любой ветви проходил хотя бы один выбранный контурный ток (исключая ветви с идеальними источниками тока). Контуры можно выбирать произвольно, лишь бы их число было равно (l-k+1-m), и чтобы каждый новый контур содержал хотя бы одну ветвь, не входящую в предыдущие.
  3. Произвольно задаемся направлением протекания контурных токов в каждом из независимых контуров (по часовой стрелке или против). Обозначаем эти токи. Для нумерации контурных токов используют сдвоенные арабские цифры (или римские).
  4. Произвольно задаемся направлением реальных токов всех ветвей и обозначаем их. Маркировать реальные токи надо таким образом, чтобы не путать с контурными. Для нумерации реальных токов ветвей можно использовать одиночные арабские цифры.
  5. По второму закону Кирхгофа, относительно контурных токов, составляем уравнения для всех независимых контуров. Уравнения составлят в следующем виде:
    Метод контурных токов
  6. Решаем любым методом полученную систему относительно контурных токов и определяем их.
  7. Переходим от контурных токов к реальным, считая, что реальный ток ветви равен алгебраической сумме контурных токов, протекающих по данной ветви. При алгебраическом суммировании без изменения знака берется контурный ток, направление которого совпадает с принятым направлением реального тока ветви. В противном случае контурный ток умножается на минус единицу.

Для более наглядного рассмотрения этапов решения задач данным способом, рассмотрим расчет электрической цепи с такой же схемой как и в предыдущем разделе.
Метод контурных токов
Предварительно на схеме выбираем (l-k+1-m)=6-4+1-0=3 независимых контура. Далее следует выбрать направления для контурных токов и токов ветвей электрической цепи. Теперь можно записать систему из 3-х линейных уравнений по правилам, изложенным выше. В качестве неизвестных в этой системе будут выступать значения контурных токов. Решаем полученную систему любым удобным способом. Зная значения контурных токов несложно определить значения тока в каждой ветви. Подробно расчет данной цепи методом контурных токов с численным расчетом можно найти в примере №12.

Расчеты других схем методом контурных токов приведены в примере №10 и в примере №11.