Цепи постоянного тока

Закон Ома

Данный закон очень удобно применять для ветви электрической цепи. Позволяет определить ток ветви при известном напряжении между узлами, к которым данная ветвь подключена. Также позволяет буквально в одно действие рассчитать одноконтурную электрическую цепь.

При применении закона Ома предварительно следует выбрать направление тока в ветви. Выбор направления можно осуществить произвольно. Если при расчете будет получено отрицательное значение, то это значит, что реальное направление тока противоположно выбранному.
Закон Ома
Для ветви, состоящей только из резисторов и подключенной к узлам электрической цепи a и b (см. рис.) закон Ома имеет вид:
Закон Ома
Соотношение (1.15) написано в предположении, что выбрано направление тока в ветви от узла a к узлу b. Если мы выберем обратное направление, то числитель будет иметь вид: (Ub-Ua). Теперь становится понятно, что если в соотношении (1.15) возникнет ситуация, когда Ub>Ua то получим отрицательное значение тока ветви. Как уже упоминалось выше, это значит, что реальное направление тока противоположно выбранному. Примером практического применения данного частного случая закона Ома при расчетах электрических цепей является соотношение (1.18) для электрической цепи, изображенной на рисунке.

Для ветви содержащей резисторы и источники электрической энергии закон Ома принимает следующий вид:
Закон Ома
Соотношение (1.16) написано в предположении, что предварительно выбрано напавление тока от узла a к узлу b. При расчете алгебраической суммы ЭДС ветви следует знак "+" присваивать тем ЭДС, чье направление совпадает с направлением выбранного тока ветви (направление ЭДС определяется направлением стрелки в обозначении источника электрической энергии). Если направления не совпадают, то ЭДС берется со знаком "-". На рисунке есть примеры применения данного варианта закона Ома - соотношения (1.17) и (1.19)

Если необходимо рассчитать одноконтурную электрическую цепь с произвольным количеством источников электрической энергии и резисторов, то следует применять соотношение (1.16), имея ввиду что Ua=Ub.

Первый закон Кирхгофа

Данный закон применим к любому узлу электрической цепи.

Первый закон Кирхгофа - алгебраическая сумма всех токов, сходящихся в узле равна нулю.
Первый закон Кирхгофа
Токи, наравленные к узлу, условно принимаются положительными, а направленные от него - отрицательными (или наоборот). На рисунке ниже изображен пример применения первого закона Кирхгофа для узла, в котором сходится 5 ветвей.
Первый закон Кирхгофа
Более понятна для понимания другая формулировка первого закона Кирхгофа: сумма токов, направленных к узлу электрической цепи равна сумме токов, направленных от него.

Второй закон Кирхгофа

Данный закон применим к любому замкнутому контуру электрической цепи.

Второй закон Кирхгофа - в любом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений в отдельных сопротивлениях.
Второй закон Кирхгофа
Для применения данного закона на практике, сначала необходимо выбрать замкнутый контур электрической цепи. Далее в нем произвольно выбирают направление обхода (по часовой стрелке, или наоборот). При записи левой части равенства ЭДС, направления которых совпадают с выбранным направлением обхода, принимаются положительными, в обратном случае - отрицательными. При записи правой части равенства положительными считают падения напряжения в тех сопротивлениях, в которых выбранное положительное направление тока совпадает с направлением обхода. В противном случае, падению напряжения следует присвоить знак "минус".

На рисунке ниже наглядно представлены примеры составления равенств для нескольких контуров электрической цепи.
Второй закон Кирхгофа